

New vibration control solid carbide end mill series Update2012.04 B199E

MSSHV, MSMHV

MSTAR vibration control end mill series **The new generation end mill** series. Ideal for efficient and economical machining of general milling applications.

New vibration control end mill series

Features

Irregular helix flutes assists in preventing vibration on difficult-to-cut materials and applications with a long overhang. The tough solid carbide substrate ensures high chipping resistance and long tool life.

Multi-purpose use

For a wide varity of workpiece materials such as mild steel, alloy steel, stainless steel and difficult to cut materials.

Reduced neck for deep machining (MSSHV type)

Variable flute angle

In comparison with conventional solid carbide end mills, the use of irregular helix flutes assists in preventing vibration.

Improved Geometry

New geometry with large chip pockets allows a smooth and quick chip disposal even during slot milling operations. The variable flute pitch reduced vibration during cutting.

Short and Medium types

Two versions available as standard. The **MSSHV** type with 4 flutes, short flute length, reduced neck and a weldon shank and the **MSMHV** type with 4 flutes, medium flute length and weldon or cylindrical shank. (MSSHV type)

4 flute, variable helix, short flute length, reduced neck, weldon shank

 $D_{1} \leq 12 \quad 0 = -0.02$ $D_{1} > 12 \quad 0 = -0.03$ $D_{2} \leq 10 \quad 0 = -0.009$ $D_{2} \leq 10 \quad 0 = -0.011$ $D_{2} \leq 10 \quad 0 = -0.011$

Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-Hardened Steel, Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy, Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
O	Ô	0		O	0		

Unit : mm

Unit : mm

MSTAR solid carbide end mill for efficient machining.

Order number	D1	ар	L3	D5	L1	D4	N	Stock	Туре
MSSHVD0600WE	6	9	14	5.85	50	6	4	•	1
MSSHVD0800WE	8	12	20	7.85	60	8	4	•	1
MSSHVD1000WE	10	15	25	9.7	70	10	4	•	1
MSSHVD1200WE	12	18	30	11.7	75	12	4	•	1
MSSHVD1600WE	16	24	40	15.5	90	16	4	•	1
MSSHVD2000WE	20	30	50	19.5	110	20	4	•	1

	0 - 0.02		D ₄ = 6	0 — -0.008
$D_1 \le 12$ $D_1 > 12$	0 — -0.02 0 — -0.03	h6	$8 \le D_4 \le 10$ $12 \le D_4 \le 16$	0 — -0.009 0 — -0.011
			4	

		•					
Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	ool Steel, Pre-Hardened Steel,Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy, Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
O	O	0		O	0		

MSTAR solid carbide end mill for efficient machining.

Order number	D1	ар	L1	D4	N	Stock	Туре
MSMHVD0600WE	6	13	50	6	4	•	1
MSMHVD0800WE	8	19	60	8	4	•	1
MSMHVD1000WE	10	22	70	10	4	•	1
MSMHVD1200WE	12	26	75	12	4	•	1
MSMHVD1600WE	16	35	90	16	4	•	1
MSMHVD2000WE	20	45	110	20	4	•	1

• : Inventory maintained.

ISSHV NEW 4 flute, variable helix, short flute length, reduced neck, cylindrical shank

Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-Hardened Steel, Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy, Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
O	O	0		O	0		

Order number	D1	ар	L3	D5	L1	D4	N	Stock	Туре
MSSHVD0600E	6	9	14	5.85	50	6	4	•	1
MSSHVD0800E	8	12	20	7.85	60	8	4	•	1
MSSHVD1000E	10	15	25	9.7	70	10	4	•	1
MSSHVD1200E	12	18	30	11.7	75	12	4	•	1
MSSHVD1600E	16	24	40	15.5	90	16	4	•	1
MSSHVD2000E	20	30	50	19.5	110	20	4	•	1

	NSMHV 🔎	
л	flute variable belix medium flute length	~

4 flute, variable helix, medium flute length, cylindrical shank $D_1 > 12 \le D_4 \le 10^{-20.03}$ $12 \le D_4 \le 10^{-20.03}$									
Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	ool Steel, Pre-Hardened Steel,Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Titanium Alloy, Heat Resistant Alloy	Copper Alloy	Aluminium Alloy		
Ø	O	0		Ô	0				

MSTAR solid carbide end mill for efficient machining.

Order number	D1	ар	L1	D4	N	Stock	Туре
MSMHVD0600E	6	13	50	6	4	•	1
MSMHVD0800E	8	19	60	8	4	•	1
MSMHVD1000E	10	22	70	10	4	•	1
MSMHVD1200E	12	26	75	12	4	•	1
MSMHVD1600E	16	35	90	16	4	•	1
MSMHVD2000E	20	45	110	20	4	•	1

 $D_1 \le 12 \quad 0 = -0.02$ $D_1 > 12 \quad 0 = -0.03$

h6

 $\begin{array}{ccc} D_1 \leq 12 & 0 - -0.02 \\ D_1 > 12 & 0 - -0.03 \end{array}$

0--0.008

Unit : mm

D₄= 6 0 -- 0.008

 $8 \le D_4^{2} \le 10 \quad 0 = -0.009$

D₄= 6

Unit : mm

4 flute, variable helix, short flute length, weldon / cylindrical shank

CUTTING CONDITIONS

N	Work laterial	Carbon steel, Ca Alloy steel (-30H	ast iron, IRC)	Alloy steel, Tool st Pre-hardened stee	teel, el (-45HRC)	Stainless steel (-1100N/mm ²)	
Di	iameter (mm)	Revolution (min ⁻¹)	Feed rate (mm/min)	Revolution (min ⁻¹)	Feed rate (mm/min)	Revolution (min ⁻¹)	Feed rate (mm/min)
	6	9000	2240	8000	2240	5300	1060
Side milling	8	7000	1680	6000	1680	4000	960
	10	5000	1440	4800	1440	3200	770
p	12	4000	1200	4000	1200	2700	760
nillir	16	3000	1140	3000	1140	2000	560
der	20	2400	860	2400	860	1600	510
Side	Depth of cut				≤0.1D)	
	6	6500	1280	4000	740	3700	440
	8	5000	1150	3000	670	2800	340
	10	4000	910	2500	530	2200	350
D	12	3500	900	2000	530	1900	300
llic	16	2500	670	1500	390	1400	280
otu	20	2000	610	1200	350	1100	260
N	Depth of cut)		0.5D D: Dia.	

1) If the depth of cut is shallow, the revolution and feed rate can be increased.

2) Air blow or oil mist is recommended for good chip evacuation.

3) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece installation is poor, vibration or abnormal sound can occur. In this case, please reduce the revolution and feed rate proportionately, or set a lower depth of cut.

Application Example

Trochoidial milling of stainless steel. Length x width x depth of slot: 100x12x25mm

5	·					\mathbf{A}	1. Step			2. Step	
End mill	MSSHVD1000WE (Ø10)				+	\searrow		Ň	\searrow .		
Material	1.4301 (X5CrNi18-10)	1				·			, I		
Revolution	10.000min ⁻¹ (314m/min)	Step over:			100mm			5mm	Ē		- 25mm
Feed	1.910mm/min (0.05mm/tooth)	0,211111		\$	TOOIIIII			.,511111			2311111
Cooling	Emulsion							_			
Holder	*HSK63A, Weldon			1	Ţ						t
*Chuck with	through coolant $C = 2.5 / 25000$ min-1		- 12mn	► n							

*Chuc balanced to G 2.5 / 25000min-1

Results:

- Due to the trochoidial milling strategy a stable process is secured.
- High axial cutting depth and high cutting speeds possible.
- A smaller workpiece contact to the tool increases tool life and improve chip disposal.
- This machining strategy is recommended especially on low power machines.

MMC HARTMETALL GmbH

Comeniusstr. 2, 40670 Meerbusch, Germany Tel. +49-2159-9189-0 Fax +49-2159-918966 e-mail admin@mmchg.de

MMC HARDMETAL U.K. LTD.

Mitsubishi House, Galena Close, Tamworth, Staffs. B77 4AS, U.K. Tel. +44-1827-312312 Fax +44-1827-312314 e-mail sales@mitsubishicarbide.co.uk

MMC METAL FRANCE s.a.r.l.

6, Rue Jacques Monod, 91400 Orsay, France Tel. +33-1-69 35 53 53 Fax +33-1-69 35 53 50 e-mail mmfsales@mmc-metal-france.fr

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2, 46136 Museros/Valencia, Spain Tel. +34-96-144-1711 Fax +34-96-144-3786 e-mail mme@mmevalencia.com

MMC ITALIA S.r.I.

V.le Delle Industrie 2, 20020 Milano, Italy Tel. +39-02 93 77 03 1 Fax +39-02 93 58 90 93 e-mail info@mmc-italia.it

MMC HARDMETAL POLAND SP. z o.o.

Al..Armii Krajowej 61, 50-541 Wroclaw, Poland Tel. +48-71335-16-20 Fax +48-71335-16-21 e-mail sales@mitsubishicarbide.com.pl

www.mitsubishicarbide.com

MMC HARDMETAL RUSSIA OOO LTD.

UL. Bolschaja Semenovskaya, 11, bld 5, 107023 Moscow, Russia Tel. +7-495-72558-85 Fax +7-495-98139-73 e-mail info@mmc-carbide.ru

